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A V E R A G E D  C H A R A C T E R I S T I C S  O F  S T R E S S E D  

L A M I N A T E D  M E D I A  

A. G. Kolpakov UDC 539.3 

The article is concerned with the problem of calculating the average rigidity characteristics of an elastic 

laminated medium as functions of the initial stresses. The classical equations of an inhomogeneous elastic 

body with initial stresses are used as the starting ones, with the procedure of averaging (homogenization) 

applied to them. In the problem considered, the nonlinearity of the averaging procedure becomes very 

important and leads to a difference in the resulting working formulas from those derived in a classical 

manner. 

It is noted in [1-3 ] that the averaging description of bodies with initial stresses requires the use of the 

method of averaging applied directly to the original inhomogeneous body. The use of a formula similar to that 

applied to homogeneous bodies (so-called "intermediate" averaging) generally gives an incorrect result. Works [ 1-3 ] 

were of a theoretical nature. In [3 ] it is noted that further progress in obtaining applied results can be made by 

considering specific structures. 

The present work suggests an analysis of the problem of averaging for bodies of laminated structure. Such 

type of problems can be of interest for performing geophysical calculations, in particular, for taking into account 

the effect of initial stresses on the propagation of longwave vibrations. The results presented were partially reported 
in [4 ]. 

Statement of the Problem. Let us consider a laminated medium of periodic structure. The layers formed 

by homogeneous elastic materials are parallel to the Oxlx2 plane and have thickness e << 1 (which is formalized 

as e --, 0 [5 ]). We write the problem of elasticity theory for a body with initial stresses in the form [6 ]: 

[(aij u (x3/~) + a~.~ ( ~ x3/e ) ~ik) u ~ = ~ . , ~.l ] j  P (xa/e) ui, tt + fi (1) 

Here u e are the permutations; aijkt and p are the tensor of elastic constants and density, respectively; aj*t 

is the tensor of initial stresses; f are the mass forces. The functions aijkl(Y3), P(Y3), cr/l(X, Y3) are periodic in Y3 = 
xa/e with period m(where m is the period of the structure of the considered body in dimensionless variables). We 

take the boundary conditions at the boundary of the region in the form: 

- e �9 ( 2 )  u 

As shown below, the basic effects in averaging are not associated with boundary conditions. The initial conditions 

u ( 5 ,  0 ) = u , t ( 5 ,  0 ) = 0  (3) 

also do not influence the basic effects. 

When e -- O, the inhomogeneous medium considered can be replaced by a certain homogeneous averaged 
medium [5 ] close in mechanical behavior to the original one. In the absence of initial stresses, the averaged body 

is described by the equations of elasticity theory with the so-called averaged elastic constants Aijkl(O) [5, 7 ]. In 
particular, these values are determined in experiments with macrospecimens of inhomogeneous media (i.e., 
specimens of size - 1 >> e). 
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Let the initial stresses a~l be determined by solution of the problem 

ai M = Gi p (xa/e)  , ai j = aiji l (xa/e)  vi,le (4) 

with conditions (2) and (3). The averaging of problem (4), (2), and (3) has the form [5, 7 ]: 

(Aiikl (0) vk,l),] = G i ( ,o ) (5) 

with conditions (2) and (3). In this case, as shown, for example, in [7 ], 

( criy ) -~ %/= Ai//a (0) v/~,t, (6) 

m 

where <. > = m-lfdy3 is the period-mean of the structure; cri/are the averaged stresses. One of the 

possible suggestions for ave:aging problem (i) is the application of the formula (used in [6 ] for taking into account 

initial stresses) to a body with elastic c o n s t a n t s  Ailkl(O) and initial stresses cr/l (so-called "intermediate" averaging). 

However, as follows from [1-3 ], in general this suggestion leads to an erroneous result and averaging of (I) leads 

to the equation 

(Aiik l (or) Uk,l),j = ( p  ) u,t t + f i ,  (7) 

where in general 

Aiykl (or) ~ AUk l (0) + Orjl t~ik. (8) 

We note that the formula used in [6 ] is applicable to the original (actual) inhomogeneous body. The 

inapplicability of the formula of [6 ] to an averaged body agrees with its fictitiousness (an averaged homogeneous 

body does not exist in reality). 
In subsequent parts of the present work the statements formulated are justified at the level of the 

construction of a formal asymptotic expansion, working formulas are derived for stressed laminated media, and 

these formulas are examined. 
Construction of an Averaged Problem. Introducing 

~ i j k l  ( x ,  x3/e)  = aijkl (x3/e)  + t:rfl ( ~ , xa /e  ) 6ik , (9) 

it is possible to write (1) in a form similar to that of a system of equations from elasticity theory. Let us write (1) 

in variational form 

T T *  T 

f f ~*r cl~dt= f f P u ~ ,. Eat + f f y d dt 
OQ OQ OQ 

for any ~ E ~ ([0, T], HI(Q)) (for the definition of spaces see [8 ]). 

Let us introduce the two-scale expansion 

(10) 

- e  = e k -  (k) --  ( 11 )  u u 

k=0 k=0 

where y -- ~ /e  is a fast variable [7 ]. The functions of the variables ~, y are differentiated according to the rule [7 ]: 

O x---] f ( "~ , -: ) = -~x + ~ 7y  i f ( -~ , -:). (12) 

Substitution of (11), with account for (12), into (i0) yields 
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f f ~e~ ijkl § § + § 
0 Q Ox l Oy I Ox] Oyy 

d~dt = 

T T 
f f p (u,(tto) + ...) ( ~ (o) + ...) ~d t  + f f 7 ( ~ (o) + ...) ~ d t ,  (13) 
OQ OQ 

where the dots stand for terms of the order of e and higher. 

Let us take ~--(0)(-s = 0 and ~--(l)= T--O)(y ) E H, where H denotes closure over the norm HI(P1) of functions 

with a zero mean that are periodic in PI. From this, we obtain, in turn, the problem of a periodicity cell: 

0 

0yj I I + 
OY l Ox I 

= 0 ,  (14) 

u (1) e H,  

and write the solution of (14) in the form 

;(1) = ~(ko (7,  y) ~176 (-~) 
OX 1 ' 

(15) 

where ~V kl is the solution of (14) at u -(0) = xk-dl. Substituting (15) into (13), at ~1) _- 0 we obtain, as in [7 ], 

f f ~iykl  6p 6q 
OQ + Oyq ) Ox l dx/ 

d-~dt = 

T T 
= f f (p)u,(tt~176 ( ~ )  d~dt + f f~-~(~  (16) 

0 a  0 Q  

for any ~o) E �9 ([0, T], HI(Q)), i.e., we find the vibration equation for a body with the following averaged 

deformation characteristics: 

/ 
Aijkl (or) = ~ c~ijkl + ~ i jpq  

Here TV kt are determined from the solution of the problem 

0yq ' 
(17) 

c~N~kq o ~ i j k t ( ~ ,  y) 

oyj oy t 
d- ~:~'i]pq ( -~ ' "Y ) = 0 ,  

-NPq E n .  (18) 

In the absence of initial stresses, formulas (17) and (18) coincide with the formulas used in [5] for 

averaging bodies without initial stresses, while the coefficients Aijkt(O) are the averaged elastic constants of an 

unstressed body. 

Laminated Media. If the layers are parallel to the Oxlx2 plane, the functions aijkl, cr~], p depend on one fast 

variable Y3: ailkl(Y3), cr~]('x,Y3), P(Ya). In this case, Eq. (18) goes over into an ordinary differential equation: 
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( ~;~'i3k3 N~k q + ~i3pq )' = O, 

from which the following inequality is obtained: 

, _  0 

ay 3 ' 

N~k q = -- ( ~r ( C~i3pq ) + ( (~r (c~/q) ' 

where C~ q are constants determined from the periodicity condition for functions ~rPq of the form <~r = 0. The 
reciprocal of the matrix (c~s~d) is denoted by (Q~'i3~)-]; (~r and (C~ q) are the vectors. We obtain 

( ( r~i3k3 ) -  1 (tT~i3pq) ) = ( ( <~i3k3)-1 ) (C~/q) ' 

whence 

and 

cp q = ( ( t2~i3k3)-I )-1 ( ( <:~r (<~'m3pq) ) 

t 

N~k q = - (~162 -1 (~(i3pq) + (~r -1 ( (~r -1 )-1 ( (~/3m3)-1 ( ~ m 3 p q )  )" 

In the case considered, formula (17) takes the form: 

(19) 

Substitution of (19) into (20) gives 

A~jpq (G) = ( 

r 

Aijpq ((7) = ( (:~ijpq + c~[ijk3 N~k q )" (20) 

~rijpq ) - ( (~rijk3) ( ~m3k3)-1 ( ~rm3pq ) ) + 

(21) + ( (~ijk3) (G~Cn3k3) -1 ) (Q%r -1 )-1 ( ( ~r ( C~m3pq ) ). 

Formula (21) is simplified, if media are considered whose layers are formed by orthotropic materials. For the latter, 

we write the matrix (~r as 

~i3k3 = ai3k3 + (733 6ik = 0 when i r k,  (22) 

by virtue of which ((~ffis3k3) -1 -- (1 /~3i3) ,  and Eq. (2D takes the form 

Aijpq (tT) = ( tT~ ijPq ) -  ( c~$'iJ k3 <2~'k3pq ) + ( t2%Ci]k3 ) ( ~k3pq ) (:~k3pq c~ffk3k3 (23) 
~k3k3 ( 1 ~ 

~k3k3 

We write expressions (22) for different values of the subscripts ijkl with allowance for the definition of the 

quantities r 

A3333 (or) = 1 (24.1) ( )' 1 

a3333 -F (733 
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a3322 ) 

a3333 + o.33 
A3322(cl) = ( 1 �9 ) '  

a3333 + o'33 

(24.2) 

1 
A2323 (0.) = ( 1 , ) '  

a2323 + (733 

(24.3) 

( 2  ) 
A3232 (o') = ( a3232 + 0"22 ) -- a2323 

a2323 + a~3 

a2323 ) 2  

a2323 + o'33 +( 1 .) 
a2323 + o'33 

(24.4) 

. ( 2 )  
AIIII (o') = ( allll + o'll ) - ax133 

a3333 + o'33 

all33 ) 2  

a3333 + 0.33 (24.5) 

a3333 + 0.33 

A1122 (a) =(a1122 ) - < 
a1133 a2233. ) 

a3333 + (733 

a3333 + t733 a3333 + 0.33 (24.6) + 

a3333 + 0.33 

Concerning the Assignment of Initial Stresses. One way to reveal initial stresses o.b is that of consideration 
of the vibrations of naturally loaded bodies (bodies under the force of gravity, etc.). Then the quantities 0.b are 
determined by solution of the problem of elasticity theory for bodies without initial stresses, i.e., by (1)-(3) at 
ab = 0. For this case, the problem is well studied, and, in particular, it is known that for media of orthotropic 
materials 

(0././) = 0.6' a33 is independent of Y3- (25) 

With account for (25), Eq. (24) yields the connection between the averaged coefficients ~iykl(0.) and 
averaged initial stresses aq. We give the corresponding formulas for the case of layers made of isotropic materials, 
expressing ai/kl in terms of the Young modulus E and Poisson coefficient v: 

A3333 (0.) = ( (1 - v) 
1 

(I + ~) (i - 2~) ~' 
E + 0"33 (1 + v) (1 -- 2v) / 

(26.1) 

A3322 (0.) =A2233 (0.) = 

( Ev ) 
( 1 - v )  E+cra3(1 + v ) ( l - 2 v )  

( ) (1 + v) (1 - 2,,) 
(1 - v )  E+o.33(l +v)(1 -2v)  

(26.2) 
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Fig. 1. A two-layer composite: a) El = l '101~ vl = 0.1; 21 = 0.5; E2 = 
100. 1011; v2 -- 0.3; ~12 = 0.5; values of subscripts in Eqs. (27): 1) 3333; 2) 
3322; 3) 2323; 4) 3232; b) El = 1. 1011; v I -- 0.2; 21 = 0.25; E2 = 10. 101~ v2 
-- 0.3; ;t2 = 0.75; values of subscripts in Eq. (27): 1) 1111; 2) 1122; 3) 3131; 
4) 1313. 

A1313 (or) = A2323 (or) = 
1 

( ) l + v  
E + o ' 3 3 ( 1  + v )  

(26.3) 

E + (1 + v) o,33 E 2 + + 0"22, 
( l + v  ) (1 + v )  E + ( 1  + v )  2cr33 E + ( 1  + v )  cr33 

(26.4) 

All l l  (or) = ( (1 -F ~,-~ (T --- 21,) ( 1 - . 2 )  (1 - 2,,) E + (1 + v) 2 (I - 21,) 2 ~ 

Ev )2 
(1 -- v) E + (1 + v) (I - 2v) a33 

+ ( ( 1  + v ) ( 1 - 2 v ) )  + a l l '  

E +  (1 - v )  cr33 

(26.5) 

Al122 (0") = ( (1 + v) (1 - 2v) (1 - v 2) (1 - 2v) E + (1 + v) 2 (1 - 2v) 2 cr33 

+ ( 1 - v )  E + ( 1  + v ) ( 1 - 2 v ) c r 3 3  

(1 + v) (1 - 2~) ) 
E +  (1 - v )  cr33 

(26.6) 
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As is seen, the dependences of c~i]kl(a) on 0.33 have a rather complex nonlinear character. 
Figure 1 presents graphs of 

y = Aqk ! (0.)/(Add (0) + 0.fl r~ik ) (27) 

as a function of 0.33 for all  = 0"22 = o'12 = 0 for the values of the subscripts given in (26). The expression in the 
denominator of (27) corresponds to "intermediate averaging." 

The Case of Small Initial Stresses. Very often the initial stresses appearing in a body are small compared 
with the characteristic value of the Young modulus of the layers El. In this case, in formulas (26) it is possible to 
carry out expansion in terms of the small parameter 0.33/E1. Preserving only the linear terms, we obtain the 
following formulas: 

A3333 (a) =A3333 (0) + a33 + 

((1 +v) 2(1-2v) 2) ] 
41 - v)2E2 )2  1 

(I + v) 41 - 2v) - a33' 
(1 - v )  E 

(28.1) 

A3322 (a) =A3322 (0) + 

v 41 + v) 41 - 2v) 
~t 

(1 - v 2) E 
/ 

(41  +v)(1 - 2v) ) 
(1 -v) E 

( T - ~ - v )  (41  + v ) 2 4 1 -  2v)2~] 
+ v (1-v)2E 2 / 1  

( 4 1 + , , )  41 - 2,,) / 
(1 -v) E / J 

0"33, (28.2) 

A2323 (a) =A2323 (0) + a33 + 

(41+v)2)E2 1] 
0"33, (28.3) 

A3232 (a) = A3232 (0) + a22 + 

J 
0.33, (28.4) 

All l l  (O) = A l l l l  (0) + all + 
2 

( (1 v__ v)----------~ ) - 2 

( v 4 1 + v )  4 1 - 2 v ) )  ( 1 - ~ v )  
41 - v) 2 E 

(41  +v) 41 - 2 v ) )  
(1 - v)  E 

+ 

+ 

v 2 (-~-~-~v) < ( 1 + v ) 2 ( 1 - - 2 v )  2 )  
(1 - v) 2 E 2 

( ( 1  + v ) ( 1 -  2 v ) )  2 a33, (28.5) 

Al122 (a) =Al122 (0) + 
(1 - v): 

<v( l+v) (1 -2v ) )  ( v .  ~ )  
(1 - v )  2 e 2 

(1 - v) E 

+ 
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+ (1 -- V ) 2 ~  . (28.6) 

(1 + v)(1 E2V) aa3 
(1 - v) 

The above formulas can be represented in the form of Ai/k1((7 ) -- [Ai/kt(O) + a/t3ik ] + Li/ktab(E, v)(Tab. The 
term in the square brackets corresponds to "intermediate" averaging. 

We give the formulas resulting from (28) for 1/-- const. They have a quite clear form and make it possible 

to evaluate the region of possible values of the coefficients Lijklab. At v = const, we write 

/13333 (o) = A3333 (0) + (733 + L~ (29) 

v 
A3322 ((7) = A3322 (0) + ~ Lo'33 , 

A2323 (or) = A2323 (0) + (733 + L(733, 

A3232 ((7) =A3232 (0) +(733+L(733 , 

AIIll ((7) = A l l l l  (0) + GII + - -  

2 
1/ 

(1 - v) 2 La3a' 

A2211 ((7) ----- A2211 (0 )  + - -  

2 
1/ 

(1 - v) 2 L~ ' 

where 

L = ~ - I .  (30) 

As is seen, the values of Lijklab are proportional to L of (30). The question of the region of possible values 
for the quantities < l / E 2 >  and < 1 / E >  is easily resolved by the methods of [9-11 ]. In particular, if no restrictions 

are imposed on E (except for those ensuring the existence of the indicated mean values), the quantity L (30) can 
take any positive values. A method for finding funct~ris that provide functional (30) with a specified value is 
presented, in particular, in [9 [. The mentioned method is also applicable for determining the possible values of 

the mean in (28). 

N O T A T I O N  

aijkl, tensor of local elastic constants; E, v, local Young modulus and Poisson coefficient; Ei, v i, 2i, Young 
modulus, Poisson coefficient, and specific content of the i-th component in a composite material; a~l, tensor of local 

initial stresses; (Tit = <(7]*/>, period-mean value of the local initial stresses; Aijkl((7), Aijkl(O), tensor of averaged 
elastic constants of a stressed and unstressed body; Le, differential operator of elasticity theory for an 
inhomogeneous body; HI(Q) ,  ~([0 ,  T ], Hi(Q)) ,  ~1, functional spaces. 
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